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The gauge-independent formalism of the previous discussion is applied to the construction of transport
equations on the density, spin density, and current density of a degenerate electron gas. Interactions are
included in a self-consistent field approximation. Scattering events are treated in a relaxation-time approxi-
mation. Three kinds of rf driving fields are considered: transverse magnetic, longitudinal electric, and

transverse electric.

I. INTRODUCTION

RITING the energy of a many-body system in
terms of the many coordinates and their mo-
menta, we can, in principle, study the system dynamics
by solving Hamilton’s canonical equations. The infor-
mation required for and obtained from this procedure is
of such detail that the prescription cannot be followed.
Also, this formulation of the many-body problem is not
suited to the generation of approximations.

To express the plasma problem in a more practicable
form, we focus our attention on more directly measur-
able dynamical variables such as the local particle den-
sity or current density. We attempt to construct a
dynamics of densities in place of the dynamics of
particles.

There are as many different independent densities as
degrees of freedom of the problem, but because we need
information only about one or a few densities to make
contact with experiment, this point of view is far more
useful. The generation of approximations is greatly
facilitated.

A transport equation is a relationship between various
time and space derivatives of some densities. Setting up
a transport equation in classical physics starts with the
consideration of the joint density of particles in coordi-
nates and velocities, f(r,v). In general, this function is
coupled to more complicated functions, fi(r,r’,v),
felrr' " v). .., fixx vyv')..., etc. Quite useful ap-
proximations can be obtained, however, by replacing all
these effects by a coupling between f(r,v) and f(r',v') or
even by a phenomenological constant. The construction
of a transport equation then reduces to the kinematic
observation that

af dav
—— =V-Vf+—Vvf M
ot dat

and the identification of mdv/dt with the average force
on a constituent particle. This is the method of the
Boltzmann equation.

The quantum-mechanical problem is more difficult,
so rendered by the uncertainty relation between r and
p. This problem is surmountable in the limit of long-
wavelength variations in the densities. One considers

* Supported by Advanced Research Projects Agency.

the behavior of wave packets describing the motion of
single particles. As long as the spread in the packet can
be maintained well below the characteristic dimensions
of the system, i.e., much less than the wavelengths of
the important phenomena and the Fermi velocity, the
failure of localization is unimportant. The classical
dynamics of particles is replaced by the quantum me-
chanics of wave packets. Silin! has presented transport
equations for the density and spin density based on this
semiclassical approach, and these equations have re-
cently been put to considerable use.?™*

We claim here that a fully quantum-mechanical
treatment of many-body dynamics leads to equations
which differ from Silin’s in the effects of magnetic fields.

The reduction of the many-body problem to single-
packet dynamics occurs at a disturbingly early point in
the semiclassical treatment. Furthermore, the treatment
of the forces on a wave packet suggests a different gauge
choice for every particle of the plasma.® Thus even if no
discrepancies arose, it would be of some interest to at-
tempt the derivation of transport equations from a more
completely quantum-mechanical viewpoint.

It is not sufficient, however, merely to discard the
semiclassical approach and completely reformulate the
plasma problem. For the same reasons that the Boltz-
mann equation approach is valuable in the classical
problem, the semiclassical approximation, with its
emphasis on the more directly measureable densities, is
highly useful. We have, therefore, cast our reformulation
in language which makes as close contact as possible
with the semiclassical form. Our results appear as
slightly different, Boltzmann-like transport equations.

It is also important that we maintain close corre-
spondence between our approach and the semiclassical
forms, because Silin’s!® equations are presented essen-
tially without accompanying derivation.

The joint density function f(r,v) occupies a central

1V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 495 (1957) [English
transl: Soviet Phys—JETP 6, 945 (1958)].
( 921;) M. Platzman and P. A. Wolff, Phys. Rev. Letters 18, 280
1967).

#S. C. Ying and J. J. Quinn, Phys. Letters 26A, 347 (1968).

4P. M. Platzman and W. M. Walsh, Jr., Phys. Rev. Letters 19,
514 (1967).

5 A. H. Wilson, T'heory of Metals (Cambridge University Press,
Cambridge, England 1953), 2nd ed., p. S1ff.

§V.P. Slhn Zh. Eksperlm i Teor. Fiz. 35, 1253 (1958) [English
transl.: Soviet Phys—JETP 8, 870 (1959)7].
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position in the classical and semiclassical transport
theories; physical, measurable numbers are expressed as
integrals over the space of v with f(r,v) as a weight func-
tion. The corresponding quantity in the quantum theory
is the density matrix p. Physical numbers are expressed
as traces of products of operators with the density
matrix. The density matrix is therefore a matter of
central concern.

The interactions make obtaining exactly correct
transport equations humanly impossible. We begin,
therefore, with an undisturbed, noninteracting plasma
and add the interactions through an approximation
scheme; for our discussion here we shall use a form of
self-consistent field approximation.

In the absence of interactions, external driving, or
scattering, the density matrix can be found exactly. The
one-particle eigenstates are harmonic-oscillator wave
functions on various arguments depending on the formu-
lation of the problem. Frequently, they are oscillator
functions of the hybrid variables, p2=¢A/c.” In this form,
the particle states bear no resemblance to the particle
packets of the semiclassical approximation. Further-
more, constructing matrix elements of interaction opera-
tors depending on r and r’ between wave functions on
the hybrid variables is awkward.

In the semiclassical approximation, we begin with
a collection of states describing particles with various
isotropically distributed velocities precessing around B
at the cyclotron frequency under the influence of the
Lorentz force. In application to degenerate Fermi gases,
particles of all velocities up the Fermi velccity are pres-
ent in the plasma; higher velocity particles are absent.
Particles of all energies between zero and the Fermi
energy are present.

In the quantum-mechanical states above, the isotropy
in velocity is built in fundamentally; the states are eigen-
states of »2 but not of v, or v,, precession is meaningless,
and only certain discrete particle energies are possible.

It is possible to reformulate the quantum-mechanical
Liouville equation, however, in order to achieve a much
closer correspondence with the semiclassical form. We
have previously developed this reformulation for the
interacting many-body system® by application of a
transformation of Thomas® useful for the free-particle
problem. As we shall discuss, a certain “overlocaliza-
tion” approximation leads to the semiclassical form.
This reformulation is entirely gauge independent, thus
eliminating one troublesome aspect of the semiclassical
approach.

In Sec. II, we present solutions of the reformulated
Liouville equation for the case of ideal plasmas. We dis-
cuss the nature of the approximation leading to the
semiclassical form.

In Sec. IIT we include the effects of interactions and

7 For example, R. E. Peierls, Quantum Theory of Solids (Claren-
don Press, Oxford, England, 1955), p. 144ff.
L. L. Van Zandt , preceding paper, Phys. Rev. B 1, 3217 (1970).
9 R. B. Thomas, ]r Phys. Rev. 171, 827 (1968).
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external driving fields. The resulting treatment of the
interactions is of the form of a time-dependent self-
consistent field approximation.

In Sec. IV, we proceed to the actual generation of
transport equations on the particle current and spin
density. To obtain a transport equation, it is necessary
to consider a hierarchy of expectations of various opera-
tors. For instance, to obtain a complete description of
the particle density, we shall consider the density itself,
the current density, the current-density current, and so
forth. The reason for this is that our theory makes its
predictions in terms of traces of various operators multi-
plied by p, not in terms of f(r,v) directly. Effectively, we
build up f(r,v) by generating its moments.

II. SOLUTION OF MODIFIED LIOUVILLE
EQUATIONS IN “LOCALIZED VELOCITY”
APPROXIMATION

Our starting point is the series of basic equations
developed in Ref. 8. Let the Hamiltonian of a many-
body system be given by

{Zm( ——EAs)?—f—U(rS,as)
+1 f V(rs—rsf)} - @

s/s

n["]z

The density matrix satisfies Liouville’s equation,

. 9p
ih— =[3e,]. 3)
ot
We define a new operator 5:
e
p=exp lz -A,

s C

d
bW
9Ds/ op
in which (9/9psz)ep"p means

(iﬁ)"[:xs,l:xs= : 3 P]___l . . ] (5)

The operator p satisfies a modified equation of motion
obtained from the Liouville equation

-7 times. . -7 times- -

~Z —*[pst [ro,p]+[rsp]-psXB], (6)

s=12mc

in which 3 is 3¢ but with p,— (e/c)A, replaced by ps.
Values of physical quantities are found by taking
traces with p. Let g[r,,mv, | be some interesting operator.

In terms of p,
_€B d
(g>=Trgp=Trg|:r3, Ps—ih— X(——~> ]ﬁ. (N
2c ops/ op
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Let us consider 5 in the representation described by
basis functions which are determinants of plane-wave
states,

= 2

{k}. (&’

, | DI Dp({K'}, {k})(D(kY],  (8)

in which {k} means a set of vectors Kk; - -ky describing
occupied plane-wave states.

Consider the operator >, p;XB-rp. To find matrix
elements of this, we construct

T (DK Z pexXB-r. DI D)o )6, 0)

since (D({k'}) | D({k}))= 6({k’,} {k}). To give meaning
to matrix elements of r, between plane-wave states, we

write ]
. et es __1
xs=lim - (10)
70 yy

with a similar expression for y,. Taking B in the z direc-
tion ensures only #; and y, need be considered. Multiply-
ing the plane-wave state e®*s by e7® changes it to
et®rya)rs, This plane wave is an eigenstate of p,.
Carrying out the indicates sum over {k’’} yields

> ik’ XB-Vip({k'},{k}).

K’ e{k’}

(1)

If we now take the operator D_; psXB- (rs) and con-
truct its matrix elements, we obtain

— > iK' XB-vp({k'},{k}). (12)
ke{k}
Combining (11) and (12) yields
(ZPeXB-[rap Diw), (x)
= Y i(hk'XB-Vit+#k'XB- Vi)
Ke{k) K’ e(k'}
Xp({k'},{k}). (13)

By a similar set of manipulations, we obtain a similar
expression for

(X [15,5] Ps XB) (x1.1x}
i(HEXB- Vi +7kXB- Vi)
Xp({k'},{k}).

We can write (85/0%)(x},(x} as two terms:

9p
e
0t/ (1}, (k)

dp
B
0t/ (k3 (k) fixed K's

XB- (Vit+Vi)p({K'},{k}).

= 2

ke{k},k’e{k’}

€
—(k+K)

ke{k} K e{k’} 2mmC

(14)
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Thus we may rewrite Eq. (6) as

(9 i
'Lh<_> = ['}C)ﬁ] )
0t/ fixed k's

by writing p as p({k-+k'}, {k—k’}) and making the
k4K’ part time dependent with

(15)

€

d
— (k) = — —(k k') XB. (16)

mc

The problem of the plasma in the magnetic field has
now been reduced to the solution of Eq. (15) from which
not only the gauge, but even reference to the field has
been eliminated. That the problem can be cast into the
zero-field form, however, presents something of a para-
dox, since there are characteristic differences in the field
and no-field problems which should survive any series of
nonsingular transformations; as examples of such differ-
ences, we have the differing lower bounds and charac-
teristic structure of the energy spectra.

The resolution of this paradox lies in considering the
conditions which p and § must satisfy besides the
Liouville equation. To represent physically meaningful
states, p must have all real non-negative eigenvalues.
This condition implies that the eigenvalues of 4 are real,
but it does #of make them positive. The operation
defined in (4) isnot a similarity transformation and thus
can change the character of the spectrum. If we treat
p like an ordinary density matrix, we are led through
the transformation (4) back to a p with nonphysical
eigenstates. Conversely, insisting that p have only non-
negative eigenvalues leads to a 5 with negative eigen-
values. The distinctions between field and no-field cases
have vanished from the differential equation for the
density matrix, but survive in the form of initial condi-
tions. If, in addition, we need to consider pure states
p®=p, we are led to ensembles in the space of trans-
formed states 52<5.

The importance of the negative eigenvalues of 5 and
the extent to which they depart from unity or zero de-
pends on the degree of localization of the states in k
space. We may consider forming packets in the space of
functions obtained by solving (15), applying the trans-
formation, (4), to the resulting 5 and so obtaining p. As
long as the initial packet is broad compared to the
separation of states in neighboring Landau levels, p ap-
proximately describes a pure state and has eigenvalues
1,0,0,0,.... Only when we attempt to make the packet
too small in 5 do the eigenvalues of p become pathologi-
cal. These results are developed for a specific example in
Appendix A.

Thus as long as our results are not sensibly dependent
on a tight “localization” of states in k space we may
ignore the actual necessity of using broadened states in
solving (15). This is equivalent in the cases we shall con-
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sider to ignoring the condensation of energy eigenvalues
into Landau levels. It is precisely the approximation we
need to obtain the semiclassical formalism. We shall now
proceed with the solving of (15) [or equivalently (16)],
in an “extreme localization” approximation. Of course
we obtain no de Haas-van Alphen effect nor related
phenomena, exactly as in the semiclassical approach.

III. SELF-CONSISTENT FIELD APPROXIMATION

We are interested in a homogeneous electron gas
driven by some external rf field. We shall consider
separately two types of driving field: a magnetic field
driving the electron spins and an electric field driving the
orbital motion. We begin with the spin-driving magnetic
field because it is the simpler. In our Hamiltonian (1),
we take

Ul(rs,05)=cofe!@ oot e i@rotgty, (17)
The wave vector and frequency of the driving field are
given by q and w, the amplitude by co.

Our unperturbed starting state is described by an
ensemble of Slater determinants of plane-wave states
with time-dependent wave vectors. The driving field
in (17) takes a state k] and converts it to the state
k+q/ and vice versa. (It is this reciprocity which makes
the spin-wave case easier.) We therefore take linear com-
binations of states, d1pxt—+ba@riqd as our approximate
one particle states in the presence of the driving field
and form Slater determinants from them to obtain ap-
proximate wave functions.

From these wave functions, we construct 5. To deter-
mine the b1(k), b2(k), we could use the variational prin-
ciple on 95/t developed in Ref. 8. The time variation
of the various k could likewise be obtained. However,
our result in (15) and (16) of the preceeding sections
makes this more general but more cumbersome pro-
cedure unnecessary. Instead, we use (15) to write

} a®
e
0t / tixed k’s

as an effective Schrédinger equation for the eigenstates
of 5, and (18) may then be solved approximately by the
use of the “time-dependent Hartree-Fock’” approxima-
tion. We have elsewhere!? discussed this approximation
at length including its derivation from Frenkel’s!':1?
variational principle.

We first assume that ¢qis small so that we may expand
in powers of ¢o about the undriven starting state. We

(18)

WL. L. Van Zandt, Phys. Rev. 172, 372 (1968).

117, Frenkel, Wave Mechanics, Advanced General Theory
(Clarendon Press, Oxford, England, 1934), p. 253.

12 See also A. D. McLachlan and M. A. Ball, Rev. Mod. Phys.
36, 844 (1964). :
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then apply the variation equations!®

i Cy
o

x[:?c«r-m(—) }dr("). (19)
0t / tixed x's

Using our assumptions about the form of ® in (19), we
obtain a set of self-consistent field equations for the
b(k). This derivation is presented in detail in an ap-
pendix, and a similar one has been presented elsewhere,!®

b(kT)

fixed k

(et — exqt )O(KT) +ih(§>

= %; {V(k—K) (nxrqb —n5r1)

XL(B®&T)—b(kT)) I} +coe™*.  (20)
This expression is composed of readily identifiable parts.
The kinetic-energy difference and the time-deriva-
tive terms are frequently encountered in self-con-
sistent field calculations as the energy denominator
€xt+q —€xt+ 7w, The interaction term can be broken into
two parts. One part is proportional to 5(kT) and can be
added to ext —exyqs to correct the single-particle kinetic
energies by the addition of the Hartree-Fock exchange
energy. The second part involves a sum over “other”
states of terms proportional to the response of the other
states to the disturbing rf field. This part assumes the
role of a correction to the driving field by the addition
of an internal polarization.

We obtain 5 by solving (20), using the b’s to construct
single-particle wave functions, combining these wave
functions in Slater determinant many-particle func-
tions, and constructing an appropriate ensemble from
many-body functions of differing #y,,.

The construction of single-particle wave functions
from combinations of plane waves, kT and k+q], as
well as the derivation of (20) assumes that k and k+q
are separated in k space, that the required packet size
or spreading of the wave functions may be ignored. This
assumption also enters the semiclassical approximation
when the constituent packets on which the Lorentz force
is calculated are eventually replaced by well-defined
plane waves. We are here in a position to place quantita-
tive limits on the validity of that approximation.
Quoting from the Appendix, the wave vector q must be
large compared to v/8~! which measures the extent to
which 5 is not diagonal in the “extreme localized” func-
tions. Now 4/8~! may be made small only if simultane-
ously 4/a™), the parameter measuring the ensemble
width (as opposed to packet width), is made large. This
ensemble width should be kept much less than the Fermi
radius to preserve a well-defined Fermi surface.
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From Appendix A we have
Mwe
7(043)”2«1 ) (21)

and since ¢>1/4/8 and kp>>1/+/a, we have

hqkpT!
hwcl: :l K1
2m

(22)

as the condition for the validity of the semiclassical ap-
proximation. Outside this range, explicit account must
be taken of the dispersion of the individual single-par-
ticle states about their mean k vector. In other words,
the uncertainty principle operating between v, and v,
may not be ignored if (22) is not satisfied. We shall point
out in a subsequent paper where this condition has been
violated in recent publications.

We consider now longitudinal density waves. Equa-
tions analogous to (20) may be obtained by taking

U(rs,05) = do[ €@ st 4 gmilarsot)] (23)
and assuming wave functions of the form
V= §0k,w+d1(ﬁk+q,vr+d2¢k——q,a ) (24)

where the ¢y are plane-wave functions. Self-consistent
field equations on the d’s have been derived by many
authors. Reference 10 includes a_derivation_in the nota-
tion_and language used here,

d
(Gk,a'_ ek+q'a—)d1(k,ﬂ') +1h(""> dl(k,ﬂ‘)
fixed k
=V(@) X (m,o —nitq,0)dr(K',07)
k0’

+§, V(k—X')(nyriq, 0~ o) [d1(K',0) —di(k,0) ]

+doet  (25)
and
dZ(k‘{‘(L 0‘)+d1*(k,0') =0.

The only substantial difference between (25) and (20)
is the appearance of the “direct” term, proportional to
V(q), as well as the exchange terms.

Finally, we consider the case of transverse electro-
magnetic driving fields. To treat these, we set U(rs,0s)

=0 and take
1 ea(rs,t)7?
Z _‘I:ps - :IJ

s 2ml c

(26)

@7

for the kinetic-energy part of 5C. We relate a(r;) to the
rf fields by
Bu(r)=v Xa(r,),
(28)
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and assuming a small obtain

ep’ eps'aO
2 —alt,)=2
s mc s mc

Eei(q-rrwt)_*_e—i(q.r;—-wt)] (29)

for the driving field. This has a form similar to (23), so
we construct similar wave functions to obtain

. lé]
(ek,,,_ekﬂ,,)dl(k,@m(_) i)
fixed k

=V(Q 2 (m, o —tr1q,0)d2(K',07)

k’, 0’

+§. V(k—K') (g0 =11 o) [d1(K',0) — da(k,0) ]

ehao X
+— (e, (30)

mc

The only difference between (30) and (25) is in the form
of the deriving terms reflecting the differences in the
fields (23) and (29).

This completes the assembly of the self-consistent
field relations necessary to construct our transport
equations.

IV. TRANSPORT EQUATIONS

A transport equation is a relation between various
time and space derivatives of some physical quantity.
The physical quantities for which we shall construct
transport equations are densities and current densities;
the simplest,of_these is the particle density itself,

n(r)=Tr Izj: d(x—r,)p. 31)

Physically meaningful numbers are obtained as traces
of the appropriate operators multiplied by the density
matrix.!® We shall consider, besides the density itself,
the spin density:

N
o@)=Tr X 0:6(r—1s)p,

(32)
=1
the particle-current density:
N
J@O=Tr 2 3{vié@—1)+o(r—1)vs}p, (33)

§=1

the spin-current density:
N
ST)=1Tr Y o{v.d(r—r,)+0(r—r1,)vs}p, (34)
s=1

13 The transport equation of Ref. 9 is obtained by considering a
certain set of matrix elements of p. We shall see, Eq. (61), that in
the self-consistent field approximation these elements actually are
the appropriate quantities to study. This does not seem to be an
obvious result, however, and we feel that the following discussion
may clarify the relation of these matrix elements to actual physical
quantities.
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the current-current density:
b4

Jii(£) =3 Tr 2 {veivs;0(t —1:)+8(r —To)vsivsi}p,  (35)
s=1

and a hierarchy of tensor current densities obtained from
powers of the velocity operators.

We obtain equations of motion for the operators by
differentiating by time

a0y 9
—— =—TrOp
at at
9
= —TrOp (36)
at

from Eq. (7). We shall not consider operators which are
explicit functions of time. Thus

30 ,0p
ih ¢ >=ih TrO0— . 37)
at at
Using Eq. (5),
3(0) . e X
ih—— =TrO [,’}C,ﬁ]—‘ _— Z stB [:r87/3]
ot 2me s=1

+|:rs:ﬁ] . stB } . (38)

We construct 5 to be diagonal in a representation built
up from single-particle states as obtained in the last
section. Let D{k} be a determinant of such states. In
terms of plane-wave states D{k}, p has large diagonal
elements, p({k},{k}), plus off-diagonal elements
p({k'},{k}), which are of higher order in the &’s or ’s. In
particular, piyiq:x, 18 of first order, where this symbol
means {k’} is formed from {k} by replacing ko with
ko==q. Similarly, pisiq,ie'+q;k0.k 1S Of second order, and
so forth; we discard these parts. The operator C has
diagonal elements in the D{k} coming from the kinetic-
energy parts and part of the interactions; it has
off-diagonal elements of first order in the driving
fields of the form yyiq,x, and elements of the form
Fxgtk,ke'—k;ko' ko irom the interaction terms. The opera-
tor O may have diagonal elements but as long as we con-
sider only single-particle operators, as in (31)-(35), the
off-diagonal elements of O can only be of the form
Oxo k- Elements of the form Oyguyxyr.50 require O to
contain forms r s, ViV, Vs, or the like. Thus, when
we evaluate the trace in (38) only those parts of 95/ 9¢
which are of the form (85/0%)xy x, Or are diagonal need
to be considered.

The diagonal elements of [3C,5 ] vanish. We can form
“one-particle off-diagonal” elements of this from the
diagonal parts of 3¢ and pyyrq,k,, from the driving terms
in 3¢ and diagonal parts of g, or from the “two-particle
off-diagonal” elements of 5C and pyyiq,k- In these last,
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Protq,ko MUS restore to the diagonal one of the two states
changed by 3¢. We then have {[5¢,5 1} xo1q,k, for the only
significant parts of [3¢,5] in the trace. We may evaluate
the various necessary matrix elements by procedures
similar to those used in Appendix B to obtain

TrO[3,5]

= kZ Gko, oo ko+a,0001(Ko,80) (Mg, — i, 0p)
0,00

di(K',o")

dl(ko,m))

X €xg,00— €xgtq,00— V(Q) 2o (11cr — s q)
k’o’
—g V(k‘)_kl)(”k/+q,ao-”k'.vo)

doe—iwt

d1(ko,@0)

[di(K',00) —d1(Ko,00) ]
dl(ko,(l'o)

+c.c. (39)

for the case of longitudinal driving fields, (3), and
analogous expressions for the other cases.

Let us consider now the terms of (38) in p,X B. Using
the procedure of Sec. II, we have

~f9p
TrO{ —
' (al>ﬁxed a’s
= T 010/p())
e d l¢]
X——{ > BX(k+k’)-<—~+~—)
2me ok ok’

ke{k’}
ke{k} -
xp({k'},{k»]. (40)

The diagonal elements of the second factor are inde-
pendent of the amplitude of the driving field, which
means equal to their equilibrium values. For these ele-
ments, we have

e l¢]
- BXxk-— =0.
2. BX akp({k},{k}) 0 (41)

MC ke{k}

Also,

J
Bxk'-Pko;{:q,k(;:O, if k?fko,koﬂ:q.
ok
The factor in braces in (40) thus yields

e a [¢]
— > BX(kot+k ’)-(————I——)p 'koe (42
2mC ko'e{k'} o ok, k¢’ - (42)
Koe{k}
Now for piy,i,, we have

Py ko= —d1(ko) (g —71) 8 (ko' — ko —0q)
—da(ko) (Miy —710) 8 (ko' — ko+-q) .
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Then for (40), we obtain

(4 ~
b dko dko/ Oko,ko'B X%(ko"l-ko)

mc
a
(2
dk,

We perform the indicated differentiations to obtain

[¢]
gi;o—)l)ko’-ko' (43)

~ . . d 9
= / Oka,ko'{%(kO"i‘kO)'(wko'— ’é;onlm)

Xdi(ko)d(ke' —ko—q)

. d
+%<ko'+ko>(nko,—nk(,)(;dl(ko))a(ko'—ko—q>

0

+3 (ko' + ko) (21 —115)da (ko)

e} a3
><<ﬁ + )a(m’—ko—q)} . ()
ok, Odk(

plus a similar expression in &(ks—kot+q). Now ko'
differs from ko by (¢/mc)BXq. Hence the first two terms
give

e o~
— [ Oko,km[BX(ko-l-%Q)
mc

ad
: ﬁdl(koxnkm—nko)]dk(,. (45)
ok
Also,

(i N _"’_)5<k0-koliq> —0, (46

oky k¢

so that (45) is the complete expression. We have also

a / Gko,kﬂ[Bx(ko—q/ 2)
mc a
- —~d2(ko><nkﬂ—nko>}dko. 7)
oko

The terms in BX%q in (45) and (47) are some of the
small correction terms not obtained in the semiclassical
approximation. Observe that #y . q—%k, is already of
order g/kp. These correction terms are of order (¢/kr)*

Now let us consider the structure of O in more detail.
All of the O’s we consider will be densities,

00=Y 8(r—1.). (48)

Furthermore, the § functions in r, are the only r, de-
pendences in O,

O1=m Y, vo(r—r1s). (49)

We convert O to Oy by replacing mv, by ps— (i¢B#%/2c)
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X (3/8ps)op. But

0 ap
Tr(——) o(r—r,)—=0, (50)
ps/ op ot
so that only p, survives in 0. If we form Oas;,
Ozij= 32 (V53055 05050)0(r —15) (51)

again we can effectively replace mv; by p; in writing
O2. In fact, if F(v,,0;) is a completely symmetric func-
tion of v,s, vys, and if

Osy=2_ F(mv,,0,)3(r—r1.), (52)

then we always have
O =3 F(ps,0,)6(r —1,;)+terms of vanishing trace. (53)

To obtain complete symmetry, we might also consider

Osf=> 6(x—1,)F(mv,,0,), (54)
but this will not be necessary.
We expand Oy as a Fourier transform,
1
Os()=—— [ dq'0,(q)e™@’ = 55
@)= o, (6)
04(q') =2 F(mvs,05)e4" ™. (56)

Thus, .
On(r)=—— / dq' 20 F(mvs,e0)e ¢, (57)
(2m) s

To construct a transport equation for Oy (q"), we need
(0s(q"))xo. k', and from (56) we have immediately

Oy (Ko =Ko )iy, k0 = F (71ko,0,) - (58)

We now have enough information to write down a
transport equation. We use Eq. (38), (39), (45), and
(58) to obtain

a
":h——<oszz (Q»
ot
9
= —Zhg; /dko F(hko,(rk0>d1(k0) (%ko+q—nko)

= f dko F(hko,01,)d1(Ko) Mg ra =i ]

dy(K')

X{e —€ —V(q)/dk'(n P =N yq)—
ko kotq k k/+q d1(ko)

- / V(ko—k')(%kurq—%k')[gl(kl) -1](11{'

1 0)

doe‘i“’t e
- +'h/dthk, ~ (ko+q/2
dl(ko)} ( oF ( oﬂko)mc( o+4a/2)

XB- Vio{di(ko)[Mxgrq— 71,1} . (59)
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It is clear from its construction that F(%ko,0x,) may
be any function of %ko. In particular, we may sum-
marize the result of taking many different F(%ko,o0x,),
obtaining transport relations for various currents by

setting
F(hkg,(l‘ko) = 6(ko— k) . (60)

We perform the indicated integrations in (59). For
clarity, we define

Dw=da1(&) [Py~ ], (61)

(62)

= ieyq — e
and write

d e
ih-®k+<€k — €xtq —i—B X (k+q/2) . Vk) D
ot c

/
= E)deoe“‘i“"—l—z V(kkl) (S)klmk - s)kfﬂk')
K
=V (@) Dw. (63)
k’,¢’

If we write Dy in terms of its time Fourier components,
in (63) we can set

0Dy

th—— =hwD(q,0). (64)
at

We have not considered here the effects of collisions with
impurities or of the two-particle scattering events
dropped from the problem by the single-determinant
assumption, made in Sec. ITI, the ‘“time-dependent
Hartree-Fock” approximation. We may crudely allow
for these effects by the inclusion of a relaxation-time
term in (63)

0Dy

D

(65)

ot collisions T
We have finally, setting @=w—1i(1/7),

e
{Ek.v“‘ €xtq,0H0—i—B X (k+q/2)- Vk} D
me

=, edo— V(Q)Nx,0 2. Dir,or
k’,0
+2 V(k—Kk")(Dwr, 6,0 — D, oM 0) .~ (66)
k'

Equation (66) applies to the case of longitudinal den-
sity waves. As we have seen, the treatment of transverse
electric driving fields requires only the modification of
the driving term,

The manipulations necessary to obtain the analogue

of (66) for the case of longitudinal spin-density oscilla-
tions are like those we have exhibited. One obtains

Nye= b(K) (icyqs — 1t ), (68)
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= Mictqt — Mt (69)

e
{ €xt — €Extql —l—h&)—ih—BX(k—i—q/Z) * Vi ¢ My
mce

=Nco+2, V(&K (M e —NIe) . (70)
kl

Equations (66), (67), and (70), together with the condi-
tion (22), constitute our results. These equations are
not yet in a form which makes easy the comparison with
the transport equations of Ref. 1. We defer the explicit
comparisons until the following paper in this sequence in
which we consider a specific physical situation and the
effects of various possible functional forms of V(k,k').
In this way we can show not only the similarities and the
differences, but also the results of the differences.

V. CONCLUSIONS

We have derived transport equations appropriate to
a charged plasma driven by three possible types of
fields. We have as yet made no assumptions about the
form of the interactions.

We have made a self-consistent field approximation,
similar to the Hartree-Fock approximation; we have
made a semiclassical approximation which eliminates
the effects of the Landau-level structure on the states;
and we have made a relaxation-time approximation
appropriate to the case wr>>1. We have not had to
make assumptions about single-particle wave packets,
Lorentz forces on localized particles, or special gauges.
Our results are in conflict with previous results. We have
deferred explorations of the conflicts to the following
paper where in the specific case of paramagnetic spin
waves is treated.
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APPENDIX A: PROPERTIES OF BASIC
TRANSFORMATION

For simplicity, we consider only a single particle.

We have been led to consider a modified density
matrix 5 obtained from the actual density matrix p by
the transformation

=T, (A1)
in which
U = g3 8py)0pgayh (31 9pz)op (A2)
and
]
m(—) 0=[x,0]. (A3)
z/ 0p

This transformation is interesting because  is much
closer to the classical joint probability density than p.
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In a plane-wave representation, we write

ﬁ=kzk‘,, |k )eri(ke] - (A4)
Then
' d 3
1= (1) vl + )] (49
kk’ é)kx' akz
Integrating by parts yields
a d
iCail=—% 1K) (5 s Jol - 40)
Kk ok, Ok,
Hence
aly!
eahy(a/aﬂz)()pﬁ = Z *_.l k’>
k,k’,0 ]!
a d\'
x[( + —~) m«]@:l . (@7
ok, Ok,
We expand 97« in a double Fourier integral:
mk’k — /m(qlq)eiql .kleik qdqldq , (Ag)
thus obtaining for p
p= Z eiay(qx+ qz')e—iai'i((hﬁ' ay’) ‘ k’)g‘l(q’q)
k,k’
X' ¥ eitk(k|dqdq’. (A9)
Now
ety (aztaz)—iax (ay+ay”) |K'y= |¥+q+a’), (A10)
where
Gz=—aqy, Jy=0¢z. (A11)
Therefore

p= / 3 |K)IU(Q'Qe™ *elke Uk |dgdq’. (Al12)
k,k’

Let us consider a family of possible 5 more or less diago-
nal in the plane-wave representation,

k—k’)%g—a (ktk'—2ko)? | (A13)

ﬁk’k = poe‘—ﬁ(

As B is allowed to become large, the eigenstates of 5 ap-
proach plane waves with eigenvalues given by the sec-
ond factor in (A13). As o is allowed to become large, the
ensemble of (A13) approaches a “pure” state described
by wave vector ko. We shall let ko be zero for simplicity
and without loss of generality.

The Fourier analysis is straightforward and}yields

Iu(q'q)

=po/6_ a%(a+B) [ 16aBp— a’2(a+B)/16aBgy-q’ (a—B)/16aB

(A14)

We substitute into (A12) and compute the inverse
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double transforms to obtain pyry,

a+B a—f ~
po’ exp [(—- ——(k'*+k?) — —k -k +iak- k')
16aB

Q

X16aﬁ(1+16a2a,8)"‘}, (A15)

in which

(A16)

We need to know the eigenvalues of this transformed p.
These are not the same as the eigenvalues of 5 because
(A1) is not a similarity transformation.

We proceed by first exhibiting an eigenstate of (A15)
and then constructing raising and lowering operators to
generate other eigenstates and their associated eigen-
values. It is first convenient, however, to simplify (A15)
by redefining the variables.

Py =po € P 2P 2100 F

(A17)

The variables p and p’ are obtained from k and k’.

B 1/2
p=(e-i)( ),
14-16a%8
2a 12
p= <k+k'>(~—~—) ,
1--16a%8 (A18)
4o

7

" T (1+160%p)
0=a4(cfB)1/2.

Actually, we can anticipate most of the final results
from (A17) and (A18). The parameters po’’ and 8 are all
that determine the eigenvalues of p. 6 is proportional to
a?, hence to H?, and thus we would anticipate that the
semiclassical approximation is valid so long as 6 does
not become too large. Indeed, as § — 0, the eigenvalues
of (A17) are 1 and 0 by inspection. However, we want 3
to become large in order that p shall be diagonal in the
plane-wave representation. To avoid large 6 in this case,
we will have to have a small. But small @ means a large
spread of the ensemble state described by 5 from (A13).
Thus to solve our equations of motion of 5 exactly pro-
duces an infinite spread of states through the plane-wave
space of functions.

An eigenfunction of (A17) is

\F:fe—)lezeiP"dp , ( )
A19

A=(1+16a%8)"2,

with eigenvalue po”'7w/(1+4+N).
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From one eigenstate, we can construct the rest by
finding raising and lowering operators. Let us search for
“ladder” operators of the form

a I¢]
O=aiptar— +asptar— (A20)

ap B

Of course, p and p are not independent, but they are
mutually perpendicular:

oY= ¥ (A21)
and therefore,
Op¥ = pu0¥. (A22)
We seek to learn if there exist o’s such that
0¥ =u,0V. (A23)

Of course if we generalize O to include p? pd/dp,

92/9p?, p3- - - and there must exist O satisfying (A23).

As it develops, however, (A20) is altogether sufficient.
From (A23) and (A22), we have

Mo—H1
(Op—p0)¥ = (uo—u)¥=——0p¥  (A24)
Mo
or
(ﬂop —pO)‘I’ ~0. (A25)
Mo

Now p¥ means JSdp'p(p,p)¥(p’) and therefore by
partial integration

a3 dp
—T=— —V, (A26)
apl apl
so that
o 9
pO¥ =|:a1p'—a2— -{-asp'—a,;———:lp‘ll ,  (A27)
ap’ op’
and since
d 9
Op¥ = [a1p+a2— +a3ﬁ+a4-;:|p‘11 , (A28)
ap op
we can obtain ui/ue without reference to .
dp o
— =(—p+itp')p, (A29)
ap
ap L,
— =(—a’p—1bp)p, (A30)
ap
op -
P =(—p'—i6P)p, (A31)
p
dp o
P =(—a’p’+ifp)o. (A32)
Y
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Both p and p’ have two components giving four equa-
tions in the a’s. Setting the determinant of these equa-
tions equal to zero yields

u U 4a 1
e S - . (A33)
Mo M1 0 a(ep)’*  a(ap)'?
from which we obtain
1 7 1z
——— :i:( +1> , (A34)
o a(@B)?  \a%B

or zero at the bottom of the ladders. Also, clearly,

M/ pen—1= 1/ o (A35)

We have two independent choices of sign to make. The
eigenvalues of our p are thus arrayed on a two-dimen-
sional net. There are two independent sets of raising and
lowering operators for a total of four operators corre-
sponding to the four possible sign choices in (A34). Some
of the eigenvalues, however, are negative and these
states are “unphysical.” If the magnitudes of these
unphysical eigenvalues can be made to vanish, or nearly
so, our initial 5 can then"be considered physically
meaningful.
We expand the square root in (A34) about small
a%f.
Kt n 1

wo (B2 a(aB)V?

(I+3d%p),  (A30)

and making opposite sign choices in the two places, we
obtain

w1/ o=k za(aB)?.

Thus at the bottom of the ladder, we have one large
eigenvalue, and all other eigenvalues are down at least
by a factor 3a(e3)'/2. This parameter must remain small
if our p is to make physical sense. We may, therefore,
make g large, thereby diagonalizing § in the plane-wave
representation, only at the cost of making « small and
spreading out the “ensemble” over many plane waves.
The condition we must maintain is

(A37)

eB 2
1>>a(ef) V2= — =3w;— , (A38)

ZCh AklAkg h2Ak1Ak2
in which Ak; and Ak, are the rms “spreads” of the
ensemble about the center, ko. Equation (A38) reads,
“the spread in energy of the states described by 5 must
exceed the zero-point energy of the lowest Landau
level.”

We could have obtained this result immediately.
Since v, and v, do not commute, there exists an uncer-
tainty relation between them. Their commutator is
proportional to the magnetic field strength. The}product
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of the mean dispersions, Av,A», must exceed some con-
stant proportional to the field. Our formalism allows us
to use #k/m for the velocity, but maintains the uncer-
tainty relation between the components. We have shown
here that the uncertainty need not be maintained in
individual wave packets describing “pure’” states, but
many find expression in an “ensemble” spreading.

APPENDIX B: DERIVATION OF SELF-CON-
SISTENT SPIN-WAVE FIELD

We seek a solution of the variational equations (18)
or, rather, their reexpression in terms of the b(k,o).
Since the explicit use of determinantal wave functions is
unnecessarily awkward, we shall cast our expressions
into “second quantized” form,

=3 € oMx,q
k,o

+% Z V(K)Ck+K,UTCk’—K,0/TCk',U'Ck,q’
k.,k’,K;0,0’
+Co Z em‘iwlC}H-qJ kaT +eiwtck—qf TCI(J 3 (Bl)
k
®=J] Ci,t|0)e T, (B2)
ek}
where
hk?
€x,0= —— +uBo.,
2m
nk,tr=ck.aTCk,a, (Bs)
Cirt=b1(k1)Cict 1 +b2(BT) Ciequ
=Ciat+-bo(k)Cirut,  (B4)
Cist=ba(k])Cis 1 +b1(k])Crat
~Cyy 1 4b1(k])Crgt!.  (BS)

The mixing of the states by the rf field must still perserve
their orthogonality:

{Cierqt,Cua} =0, (B6)
from which we obtain
br*(k+ql)+b:(kT)=0. (B7)

The creation and anihilation operators appearing in the
wave functions are different from those in the Hamil-
tonian. With about the same amount of difficulty, we
can either convert those in the wave functions or the
energy; we choose to change the Hamiltonian.

We consider first the kinetic-energy terms. Working
only to first order in the &’s, we invert (B4) and (B5),

Cka= émf “bz(kT)Ck%ﬂ.r ’ (BS)
Ciat=Cia"—b1(k|)Ciqt. (B9)
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Thus the kinetic energy becomes

=3 Gk,qﬁk,u"‘bz(kT)ekTélﬂ-ql t1Cut
k,o

—b2* (7)€t Cict TCicrqt —b1(k)) €1 Gt 'Cos

—_ bl* (kl) €xl akl TCk—qT

=Z €x,oflx, o (B]'O)

k,o
= [ba(kT) ext+01*(K+q|) exqs JCitqs 'Cict
k

~ % [ (KD et ikt s ot G

and by using (B7)
T=3 e oftc,o— . ba(kT)(ext —€k+q¢)C'k+qU‘ékt
k,o k

—§ b1(k])(exs — ex—qt)Ciqt 'Crs . (B11)

The interaction potential energy is found by a similar,
but more arduous procedure,

V =% Z V(K) €k+K,aTCk’—K,a"T5k’ ,o! Ck,«r

k,k; K
oy V(K)Ciyarxt 1Ci—x,o 1Cor o Cict bo(k+KT)
- = V(K) Cegrxt 'Ci—x,0 1Cir, s Cra b1 (k+K )
~ :/_:h V(K)Cirx,o'Crr k1 Ccrqt 1Csc, ob2* (K'T)
— ¥ VE)Cix.o'Coxi Coqt Cr,obr*(K']).
kKo (B12)

Finally, the driving terms in (B1) are already of first
order in ¢ (hence b).

D=c¢ Y e Crr 1 Cir+e'CrtCis.  (B13)
k

The variational equations require us to construct

)
0t / fixed s ’

0 <6<I>T>
db(k)\ o¢ fixed K's

Jeo.

and

In calculating 5¢®, however, since we are going to
project onto &, only a limited number of the many
different matrix elements of (B12) need to be con-
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sidered. To see this, we calculate &:

a%d ) aba(K'T) _
<_) =—iI'®+Y Cirtqb 1Crt®
at fixed ks K’ 8t

aby(k'}) _
+(l)

Cor_qt'Cen®.  (B14)

Taking the functional derivative with respect to da(kol)
yields two kinds of terms: those of zero order in the &’s,

{ —iT Cipqs TCit
+[ s 9ba(kol)
obo(kol) Ot

]Ckwqﬁakof ] ¢, (B15)

and terms of first order in the &’s which we discard. Thus
8%/8by contains only functions of the form

Cko—l_qlfc'kofq’, Cqutfako;q?, and &. (B16)

Thus from all the terms in (B12), we need keep only
those which fit the patterns of (B16).

Consider the first term in (B12); it leaves the total
number of spins up and down unchanged. Therefore,
only that part of it need be kept for which either

(i) k+K=k kK -K=K
or

(i) k+K=¥ —K=k.

The first possibility gives V(0)fix,ofior Which we as-
sume to vanish, cancelling ¥ (0) against a uniform posi-
tive background. The second possibility gives

— > V(k—K)fix,ofixr o

kk’, 0

and o=0¢’,

(B17)

The second term of (B12) turns one spin down. We
therefore need only keep terms of the form CigyqstCiot-
Now we have three possibilities:

() kt+q+K=kotq,
which we discard,

(i) k+q+K=ketq,
which yields

Y V(ko—K)ixtb2(Ko]) Crotat ' Crot
k

K—K=K,

K—K=k;o¢'=T,

(B18)
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and

(i) k+q+K=k; kK —K=ktq;o'=],
which yields
> V(& —ko—Q)iiwrsba(K' —q 1) Cuprat 'Ciot
kl

=3 V(&' —ko)iir4q1b2(K'T) Crorat [Ciot . (B19)
k'

The fifth term of (B12) also turns one spin down, and
we have three possible terms: (i) k+K=k; kK'—K
= ko+q — K=0, which we discard, (i) k+K=k'—q;
o=T, ¥ —K=ko+q, yielding

Y V(&' —Ko—q)fir—qthr* (&) Coras 1 Cicot

kl

=Z V(k’—ko)ﬁk'Tbl*(k,+QL)éko—qlTékoT ’ (BZO)
kI

and (iii) k+K=k¢+q; o=]; k' — K=k, yielding
> V(k0+q_‘k)ﬁk¢b1*(k0+ql)6ko+qﬂékof
k

=y V(ko—k)ﬁk+qlb1*(k0+q1¢)€ko+q$Tckof . (B21)
X

We collect (B18)-(B21) and obtain
%} V (ko — &) [t ba(lo]) +tic+qs b2(K'T)
i1 b (K +q)) iy br* (Ko+a)) JCkorat 'Ciot
=3 V(lo—k)[ba(kol) —ba(k'T)]
* X [t —Tir4q4 JCxorat 1Chot - (B22)

The third and fourth terms of (B12) yield a similar ex-
pression in b1(k]) and Cy—q' Ciqt-

We gather up the terms from —:%#8%/d¢, the kinetic,
potential, and driving terms to obtain

ba(KT) (exyqb —€xt)
+§ V (k—K")[(b2(kT) —ba(k'T) ] (Firrt — Toicrrat)

by (K
Fcoiot—ifs 2T)=m
o

(B23)

by applying the variational equations (18). A similar
set of mampulatlons, together with the orthogonahty
relation (BS8) glves another expression in Cyqt'Cis
which, however, is identical to (B23). These are the
self-consistent ﬁeld equations we seek.



